Search results for " Block copolymer"

showing 6 items of 6 documents

Synthesis of polybutadiene-polycaprolactone multi-blokcs based on hydroxyl telechelic polybutadiene. Composition and kinetic study

2009

International audience

[ CHIM.POLY ] Chemical Sciences/Polymersthermoplastic block copolymerspoly(butadiene[CHIM.POLY] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/PolymersComputingMilieux_MISCELLANEOUSpoly(e-caprolactone)
researchProduct

Poloxamer/sodium cholate co-formulation for micellar encapsulation of Doxorubicin with high efficiency for intracellular delivery: an in-vitro bioava…

2020

Abstract Hypothesis Doxorubicin hydrochloride (DX) is widely used as a chemotherapeutic agent, though its severe side-effects limit its clinical use. A way to overcome these limitations is to increase DX latency through encapsulation in suitable carriers. However, DX has a high solubility in water, hindering encapsulation. The formulation of DX with sodium cholate (NaC) will reduce aqueous solubility through charge neutralization and hydrophobic interactions thus facilitating DX encapsulation into poloxamer (F127) micelles, increasing drug latency. Experiments DX/NaC/PEO-PPO-PEO triblock copolymer (F127) formulations with high DX content (DX-PMs) have been prepared and characterized by scat…

Biological AvailabilityPoloxamerbile salts; confocal microscopy; Doxorubicin hydrochloride; drug-delivery; PEO-PPO-PEO block copolymers; pluronics; tumour cell lines02 engineering and technologyconfocal microscopypluronics010402 general chemistry01 natural sciencesMicellePolyethylene GlycolsBiomaterialsHydrophobic effectColloid and Surface ChemistryPEO-PPO-PEO block copolymersbile saltsSolubilitySodium CholateMicellesChemistryDoxorubicin hydrochloridePoloxamerSodium Cholate021001 nanoscience & nanotechnologydrug-delivery0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDoxorubicinDrug deliveryBiophysicsDoxorubicin Hydrochloridetumour cell lines0210 nano-technologyIntracellular
researchProduct

P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellula…

2012

In order to explore the influence of polymer microstructure and stereochemistry in biological settings, the synthesis, micellization, cellular fate and the use in paclitaxel formulations of poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(L-lactide) (P(HPMA)-block-P(LLA)) and poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(DL-lactide) block copolymers (P(HPMA)-block-P(DLLA)) were studied. To this end, P(HPMA)-block-P(lactide) block copolymers and their fluorescently labeled analogues were synthesized. The polymers exhibited molecular weights M-n around 20,000 g/mol with dispersities (D=M-w/M-n) below 1.3. In addition, the solution conformation of this new type of partially degradable…

PaclitaxelStereochemistryCell SurvivalPolyestersTacticityMolecular ConformationPharmaceutical ScienceMicellechemistry.chemical_compoundTacticityAmphiphilePolymer chemistryPolylactide block copolymersCopolymerHumansReversible addition−fragmentation chain-transfer polymerizationMicelleschemistry.chemical_classificationLactideRAFT polymerizationPoly(N-(2-hydroxypropyl)-methacrylamideBiological TransportPolymerStructure activity relationshipAntineoplastic Agents PhytogenicKineticschemistryDrug deliveryHPMA block copolymersMethacrylatesHeLa Cells
researchProduct

On the formation of inclusion complexes at the solid/liquid interface of anchored temperature-responsive PNIPAAM diblock copolymers with γ-cyclodextr…

2017

The thermal responsive behavior of adsorbed layers of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAAM) and poly((3-acrylamidopropyl)trimethylammonium chloride) (PAMPTMA(+)) with γ-cyclodextrin (γ-CD) at the solid/liquid interface has been investigated using three in situ techniques: null ellipsometry, quartz–crystal microbalance with dissipation monitoring, and neutron reflectometry. The measurements provided information about the adsorbed amounts, the layer thickness, hydration and viscoelastic properties, and the interfacial structure and composition. The copolymers adsorb to silica with the cationic PAMPTMA(+) blocks sitting as anchors in a flat conformation and the PNIPAAM ch…

AmidePolymers and PlasticsBlock copolymerReflectometerReflection02 engineering and technology01 natural sciencessupramolecular chemistryquartz crystal microbalancechemistry.chemical_compoundColloid and Surface ChemistryEllipsometryViscoelasticity Inclusion complexCopolymerMaterials ChemistryPoly (n isopropylacrylamide)Poly(N-isopropylacrylamide)Settore CHIM/02 - Chimica Fisicachemistry.chemical_classification/dk/atira/pure/subjectarea/asjc/1600/1606Reflectometry/dk/atira/pure/subjectarea/asjc/1500/1505Cyclodextrinunclassified drug Article021001 nanoscience & nanotechnologyThermoresponsive block copolymerpriority journalsolidpolymerizationPoly(N-isopropylacrylamide)synthesiNeutron reflectometrypolyrotaxane0210 nano-technologyellipsometryMaterials science/dk/atira/pure/subjectarea/asjc/2500/2505/dk/atira/pure/subjectarea/asjc/2500/2507poly(n isopropylacrylamide)010402 general chemistryLower critical solution temperatureAcrylic monomeratom transfer radical polymerizationAdsorptioncomplex formationPolymer chemistryCyclodextrinliquidPhysical and Theoretical ChemistrySolid/liquid interfaceThermo-responsive Hydrogels copolymerneutron reflectometryInclusion complexgamma cyclodextrinCationic polymerization0104 chemical sciencessolid liquid interfacechemistryChemical engineeringInvited ArticleColloid and Polymer Science
researchProduct

Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copoly…

2010

We describe a synthetic pathway to functional P(HPMA)-b-P(LLA) block copolymers. The synthesis relies on a combination of ring-opening polymerization of L-lactide, conversion into a chain transfer agent (CTA) for the RAFT polymerization of pentafluorophenyl methacrylate. A series of block copolymers was prepared that exhibited molecular weights $\overline M _{\rm n}$ ranging from 7 600 to 34 300 g · mol(-1) , with moderate PDI between 1.3 and 1.45. These reactive precursor polymers have been transformed into biocompatible P(HPMA)-b-P(LLA) copolymers and their fluorescently labeled derivatives by facile replacement of the pentafluorophenyl groups. The fluorescence label attached to this new …

chemistry.chemical_classificationMaterials scienceRAFT polymerizationPolymers and PlasticssynthesisStereochemistryOrganic ChemistryFluorescence correlation spectroscopyfluorescence correlation spectroscopyPolymerchainMethacrylatebiocompatible block copolymerspolylactide block copolymersTransfer agentchemistryPolymerizationPolymer chemistryAmphiphileHPMA block copolymersMaterials ChemistryCopolymerReversible addition−fragmentation chain-transfer polymerization
researchProduct

Crystallinity of block copolymer controlled by cyclodextrin

2018

We report a differential scanning calorimetry study to investigate the effect of cyclodextrins (CD) on the crystallinity of a copolymer. Tetronics was selected as copolymer with star-like shape formed by four polyethylene oxide flanked by four polypropylene oxide blocks linked to ethylenediamine central group. The use of CD with different cavity size was exploited for a block selective inclusion. A model for supramolecular association was considered for a quantitative description of the enthalpy data. The polymer chain incorporation into the CD cavity generates a loss of crystallinity. The stoichiometry of the CD/copolymer aggregates can be tuned by changing the CD cavity size. The investig…

Materials scienceTetronicSupramolecular chemistryOxideSupramolecular chemistry Crystallinitie02 engineering and technology010402 general chemistry01 natural sciencesPolypropylene oxidePolymer chainDSCchemistry.chemical_compoundCrystallinityDifferential scanning calorimetryCopolymerDifferential scanning calorimetryCopolymerCyclodextrinSupramolecular associationSupramolecular structurePhysical and Theoretical ChemistrySelective inclusionSettore CHIM/02 - Chimica FisicaPolypropylenechemistry.chemical_classificationTetronic Block copolymerCyclodextrinEthylene diaminePolymer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical scienceschemistryChemical engineeringCavity resonatorQuantitative descriptionsense organsPolyethylene oxide0210 nano-technologyPolypropylene
researchProduct